Quantization of the undouble

June-20-11 1:19 PM

+:= herd kill~ -:=tail killer.

Thus, we can identify $\operatorname{End}(M_+\otimes M_-)$ with $U_h(\mathfrak{g})$. From now on we make no distinction between them.

Now let us define the subalgebras $U_h(\mathfrak{g}_{\pm}) \subset U_h(\mathfrak{g})$.

Let $x \in F(M_+)$. Define the endomorphism $m_-(x)$ of $M_+ \otimes M_-$ to be the composition of the following morphisms in \mathcal{M} : $m_-(x) = (x \otimes 1) \circ (1 \otimes i_-)$. This defines a linear map $m_-: F(M_+) \to U_h(\mathfrak{g})$. Denote the image of this map by $U_h(\mathfrak{g}_-)$.

Let $m_{-}^{0}(x) \in U(\mathfrak{g}_{-})$ be defined by the equation $x(1_{+} \otimes 1_{-}) = m_{-}^{0}(x)1_{+}$. It is easy to show that $m_{-}(x) \equiv m_{-}^{0}(x) \mod h$, which implies that m_{-} is an embedding.

A similar definition can be made for $x \in F(M_-)$. Define the endomorphism $m_+(x)$ of $M_+ \otimes M_-$ to be the composition of the following morphisms in \mathcal{M} : $m_+(x) = (1 \otimes x) \circ (i_+ \otimes 1)$. This defines an injective linear map $m_+ : F(M_-) \to U_h(\mathfrak{g})$. Denote the image of this map by $U_h(\mathfrak{g}_+)$.

Proposition 4.2. $U_h(\mathfrak{g}_{\pm})$ are subalgebras in $U_h(\mathfrak{g})$.

$$x: M_{+} @ M_{-} \longrightarrow M_{+}$$

$$M_{+} @ M_{-}$$

$$M_{+} @ M_{-} @ M_{-}$$

$$M_{+} @ M_{-} @ M_{-}$$

$$M_{+} @ M_{-}) \otimes M_{-}$$

$$M_{+} \otimes M_{-}$$

Question. Given $x \in U(y_{-}) \cong F(M_{+})$, $y \in U(y) \cong M_{+} \otimes M_{-}$, Find $M_{-}(x)(y) \in M_{+} \otimes M_{-} \cong U(y)$. Answer. $x : I_{+} \otimes I_{-} \longmapsto x : I_{+}$ $y \mapsto \Delta(y) I_{+} \otimes I_{-} \longmapsto \Delta^{3}(y) I_{+} \otimes I_{-} \otimes I_{-}$ $\downarrow x \otimes I_{+} \longrightarrow I^{3}(y) \bigoplus_{l=1}^{n} I_{l+-} = I^{n} : Co-Conmitted in Constant in Constan$

Recycling.

$$\Delta(y) \cdot (x \otimes l) \cdot l_{+} \otimes l_{-} = b^{-1} \Rightarrow m_{-}(x)ly \in U(g)$$

$$\Delta(y) \cdot \Delta(x) \cdot l_{+} \otimes l_{-}$$

$$\Delta(yx) \cdot l_{+} \otimes l_{-} = b^{-1} \Rightarrow yx$$

$$So if books like $m_{-}(x)ly = yx$.$$