Quantization of the undouble

See also page 178 of Etingofschiffmann.

$$
+:=\text { hand kills }
$$

-: =tail killer.

Thus, we can identify $\operatorname{End}\left(M_{+} \otimes M_{-}\right)$with $U_{h}(\mathfrak{g})$. From now on we make no distinction between them.

Now let us define the subalgebras $U_{h}\left(\mathfrak{g}_{ \pm}\right) \subset U_{h}(\mathfrak{g})$.
Let $x \in F\left(M_{+}\right)$. Define the endomorphism $m_{-}(x)$ of $M_{+} \otimes M_{-}$to be the composition of the following morphisms in $\mathcal{M}: m_{-}(x)=(x \otimes 1) \circ\left(1 \otimes i_{-}\right)$. This defines a linear map $m_{-}: F\left(M_{+}\right) \rightarrow U_{h}(\mathfrak{g})$. Denote the image of this map by $U_{h}\left(\mathfrak{g}_{-}\right)$.
$\stackrel{\text { Let }}{m_{-}^{0}}(x) \in U\left(\mathfrak{g}_{-}\right)$be defined by the equation $x\left(1_{+} \otimes 1_{-}\right)=m_{-}^{0}(x) 1_{+}$. It is easy to show that $m_{-}(x) \equiv m_{-}^{0}(x) \bmod h$, which implies that m_{-}is an embedding. A similar definition can be made for $x \in F\left(M_{-}\right)$. Define the endomorphism $m_{+}(x)$ of $M_{+} \otimes M_{-}$to be the composition of the following morphisms in \mathcal{M} :
$m_{+}(x)=(1 \otimes x) \circ\left(i_{+} \otimes 1\right)$. This defines an injective linear map $m_{+}: F\left(M_{-}\right) \rightarrow$ $U_{h}(\mathfrak{g})$. Denote the image of this map by $U_{h}\left(\mathfrak{g}_{+}\right)$.

Proposition 4.2. $U_{h}\left(\mathfrak{g}_{ \pm}\right)$are subalgebras in $U_{h}(\mathfrak{g})$.
Question. Given $x \in U\left(g_{-}\right) \cong F\left(M_{+}\right), \quad y \in U(g) \cong M_{+} \otimes M_{-}$,
Find $m_{-}(x)(y) \in M_{+} \otimes M_{-} \cong u(y)$.
Answer. $x: I_{+} \otimes 1-\longmapsto x \cdot 1_{+}$

$$
y\left|\rightarrow \Delta(y) I_{+} \otimes I_{-} \xrightarrow{\mid 81} \Delta^{3}(y) I_{+} \otimes\right|_{-} \otimes I_{-}
$$

Recycling.

$$
\begin{aligned}
& \Delta(y) \cdot(x \otimes \mid) \cdot 1_{+} \otimes 1-\xrightarrow{\phi^{-1}} m_{\sim}(x)(y) \in U(g) \\
& \Delta(y) \cdot \Delta(x) \cdot 1_{+} \otimes 1- \\
& \Delta \| x) \cdot 1_{+} \otimes 1-\xrightarrow{\phi^{-1}} y x
\end{aligned}
$$

So it books like $m_{-}(x)(y)=y x$.

