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Thus, we can identify End(My @ M_) with Uy(g). From now on we make no

w4 . R @ 5
distinction between them. x //]4' M- M"—
Now let us define the subalgebras Uy, (a4 ) € Up(g).
Let # € F(M.). Define the endomorphism m_(z) of M, © M_ to be the M-fMT
composition of the following morphisms in M: m_(x) = (# @ 1) e (1 @ i_). This J/ 18]~
defines a linear map m_ : F(My) — U(g). Denote the image of this map by

Un(g-). /"l+®@/l_@/lw)
Let m” (x) € U(g-) be defined by the equation x(1+ @ 1-) = m" (x)1+. It is ﬂl h) d,g‘ =/

casy to show that m_(x) = m® (x) mod h, which implies that m_ is an embedding.

A similar definition can be made for @ € F(M_). Define the endomorphism @44—@/’1_.)@/‘4_,
msl(x) of My @ M_ to be the composition of the following morphisms in M: J;(@)
ma(x) = (1@ ax)o(iy @ 1). This defines an injective linear map m4 : F(M_) —
Uy (g). Denote the image of this map by Uy (g, ). /\/L’_@//]_

Proposition 4.2. Un(gs) are subalgetras in Ui (0).
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